Life is a game, take it seriously

Archive for May, 2015|Monthly archive page

A Tale of Two Visual Pathways

In Computer Vision, Neural Science, Visual Illusion on May 14, 2015 at 7:53 pm

by Li Yang Ku (Gooly)


The idea that our brain encodes visual stimulus in two separate regions based on whether it contains information about the object location or identification was first proposed by Schneider in 1969. In 1982 Ungerleider and Mishkin further proposed this two visual pathway hypothesis that suggests that the two areas, inferotemporal cortex and posterior parietal cortex, receive independent sets of projections from the striate cortex (also named the visual cortex, often referred as V1. This is where many people think Gabor like filters reside). According to their original account, the ventral stream that starts from V1, bypassing V2, V4 and end in the inferotemporal cortex plays a critical role in identifying objects, while the the dorsal stream that starts from V1, bypassing V5, V6 and end in the posterior parietal cortex encodes the spatial location of those same objects. Lesion experiments on monkeys at that time fitted well with this hypothesis. Monkeys with lesions of the inferotemporal cortex were impaired in recognition tasks but still capable of using visual cues to determine which location is rewarded. Opposite results were observed with monkeys with posterior parietal lesions. This hypothesis is often known as the distinction of ‘what’ and ‘where’ between the two visual pathways.


However, further findings found that this hypothesis that the two visual pathways encodes spatial location and object identification separately doesn’t quite capture the whole picture. Subjects with lesion in the posterior parietal region not only have difficulty in reaching the right direction but also in positioning their finger or adjusting the orientation of their hand. In 1992, Goodale and Milner proposed an alternative perspective on the functionality of these two visual pathways based on many observations made with patient DF. Instead of making distinctions on the internal representation, Goodale and Milner suggested to take more account of output requirements and introduced a separation between the two visual pathways based on ‘what’ and ‘how’ instead of ‘what’ and ‘where’.

sight_unseen_fig2.1.2 sight_unseen_fig2.1.1

Patient DF is unique in the sense that she developed a profound visual form agnosia due to anoxic damage to her ventral stream. Despite DF’s inability to recognize the shape, size and orientation of visual objects, she is capable of grasping the very same object with accurate hand and finger movements. When DF is asked to indicate the width of a cube with her thumb and index finger, her matches bore no relationship to the actual size of the cube. However when she was asked to reach out and pick up the cube, the distance between her thumb and index finger matches the dimension of the cube systematically. In a series of experiments, DF is capable of adjusting her fingers to pick up objects of different scale even though she is unable to perceive the dimension of those objects. Based on these observations, Goodale and Milner proposed that the dorsal pathway provides action-relevant information about the structural characteristic and orientation of objects and not just about their position.


This two visual pathway hypothesis often referred to as the perception-action model received significant attention in the field of Neuropsychology and influenced thousands of studies since 1992. However several aspects of this model is questioned by recent findings. In 2011, Hesse etc. showed that the opposite experiment results between patients with lesion in dorsal stream and ventral stream are effected by whether the subject fixate on the target and are not as complimentary as previously thought. Several experiments also shown that the functional independence between action and perception might overlooked conditions when perception and actions actually interact. In 1998, Deubel etc. found that participants’ ability to discriminate a visual target is increased when the participants point to the target location. In 2005, Linnel etc. further found that this increase in discrimination ability happens even before the pointing action is performed. Simply the intention to perform an action may change perception capability. These findings suggest that the ventral and dorsal visual pathways are not as independent as previously thought and may ‘talk’ to one another when actions are programmed.

References are here