By Li Yang Ku (gooly)

Generating realistic images with machines was always one of the top items on my list of difficult tasks. Past attempts in the Computer Vision community were only able to get a blurry image at best. The well publicized Google Deepdream project was able to generate some interesting artsy images, however they were modified from existing images and were designed more to make you feel like on drugs then realistic. Recently (2016), a work that combines the generative adversarial network framework with convolutional neural networks (CNNs) generated some results that look surprisingly good. (A non vision person would likely not be amazed though.) This approach was quickly accepted by the community and was referenced more then 200 times in less then a year.

This work is based on an interesting concept first introduced by Goodfellow et al. in the paper “Generative Adversarial Nets” at NIPS 2014 (http://papers.nips.cc/paper/5423-generative-adversarial-nets). The idea was to have two neural networks compete with each other. One would try to generate images as realistic as it can and the other network would try to distinguish them from real images at its best. By theory this competition will reach a global optimum where the generated image and the real image will belong to the same distribution (Could be a lot trickier in practice though). This work in 2014 got some pretty good results on digits and faces but the generated natural images are still quite blurry (see figure above).

In the more recent work “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks” by Radford, Metz, and Chintala, convolutional neural networks and the generative adversarial net framework are successfully combined with a few techniques that help stabilize the training (https://arxiv.org/abs/1511.06434). Through this approach, the generated images are sharp and surprisingly realistic at first glance. The figures above are some of the generated bedroom images. Notice that if you look closer some of them may be weird.

The authors further explored what the latent variables represents. Ideally the generator (neural network that generates image) should disentangle independent features and each latent variable should represent a meaningful concept. By modifying these variables, images that have different characteristics can be generated. Note that these latent variables are what given to the neural network that generates images and is randomly sampled from a uniform distribution in the previous examples. In the figure above is an example where the authors show that the latent variables do represent meaningful concepts through arithmetic operations. If you subtract the average latent variables of men without glasses from the average latent variables of men with glasses and add the average latent variables of women without glasses, you obtain a latent variable that result in women with glasses when passed through the generator. This process identifies the latent variables that represent glasses.